Ny Bane
Hovedgård-Hasselager – Visualiseringer
Øst
Eksisterende forhold
Visualisering af løsning
Eksisterende forhold
Eksisterende forhold
Visualisering af løsning
Eksisterende forhold
Visualisering af løsning
Eksisterende forhold
Visualisering af løsning
Visualisering af løsning
Formålet med udarbejdelse af visualiseringer er at give offentligheden og beslutningtagere en retvisende forståelse for hvorledes projektet vil fremtræde.

Der er ud fra landskabsmæssige påvirkninger og påvirkninger af sårbare områder udvalgt de standpunkter der laves visualiseringer af. I denne udvælgelse har deltaget landskabsarkitekter, miljørådgivere og teknikere.

Visualiseringerne i denne rapport er fotomatch, der laves ved at tage foto optaget på stedet og tilføje de nye anlæg i billederne vha. computergrafik der er lavet ud fra en 3D model af projektet. Billederne i denne rapport er taget med et digitalt spejreflekskamera på stativ og for hvert foto er kameraet og en række målepunkter i billedet målt ind af en landinspektør med en RTK-GPS, der giver en præcision på ca. +/- 2 cm. På denne måde kan kameraets position, retning og billedvinkel med stor præcision overføres til 3D modellen.

3D modellen er opbygget af grunddata og projektdata. Grunddata omfatter en digital terrænmodel, en digital overflademodel og ortofoto fra Geodatastyrelsens data fra Kortforsyningen.dk Terrænmodellen gengiver jordoverlæden renset for bygninger og beplantning og det er den som projektet skæres ind i. Overflademodellen viser bygninger og træer og bruges til at verificere indpasningen mellem forgrund og baggrund i det enkelte billede. Projektdata er 3D CAD modellerne af den nye jernbane, veje, broer, bassiner, perroner m.m. Til et VVM projekt er disse modeller lavet på et mere overordnet niveau end ved detailprojektering, som vil komme senere. Derfor er detaljer som køreligningsmaster, autoværn, afstrøbning etc. tilføjelser som generelle elementer som en del af arbejdet med visualiseringerne. Dette er gjort for at give en mere korrekt helhedsopfattelse af projektet.

Formålet med visualiseringerne er at give modtageren en god oplevelse af hvad projektet vil betyde for det område hvor der visualiseres fra. Da jernbanen er et langt vandret element som både skærer sig ind i og stikker ovenud af landskabet er det en udfordring at finde egne steder hvor man både er tæt nok på til at se detaljer og samtidig kan se nok af banen til at se samspillet med landskabet. Der er derfor valgt at bruge en 35 mm optik som ligger i den lave ende af normalområdet, da den giver et vandret billedfelt på ca. 55 grader ud af horisontens 360 grader frem for en 50 mm optik der vil give et vandret billedfelt på 39 grader.

For alle visualiseringer gælder, at de bør ses i den korrekte betraktningsafstand, som er den afstand hvor visualiseringen på print eller vist på en skærm fylder samme billedfinkel som den gengiver. For 35 mm billederne i denne rapport er betraktningsafstanden lig med billedets bredde. Dvs. trykt på liggende A3 hvor billedet er 40 cm bredt skal det holdes 40 cm fra øjnene og tilsvarende for billeder vist på en skærm.

Valg af standpunkter:
Udvælgelse af standpunkter har været en iterativ proces, hvor både landskabsarkitekter, miljørådgivere og teknikere er kommet med input.

Processen startede med planlægningen af besigtigelseruten, ruten blev planlagt så der var stop på alle miljø og landskabsmæssige interessante lokaliteter og gode muligheder for at tage billeder.

Efter turen blev der på baggrund af billede materiale fra turen udarbejdet et oversigtskort med forslag til standpunkter valgt både med grundlægning i landskabsmæssige påvirkninger og med input fra miljørådgiveren med hensyn til sårbare områder. Landskabsarkitekterne udarbejdede et forslag til standpunkts lokaliteter og vinkler.

Der blev efter at billederne fra de valgte standpunkter var taget indkaldt til et koordineringsmøde med kameraet og en række målepunkter i billedet målt ind af en landinspektør med en RTK-GPS. På denne måde kunne kameraets position, retningsvinkel og billedfinkel med stor præcision overføres til 3D modellen.

3D modellen er opbygget af grunddata og projektdata. Grunddata omfatter en digital terrænmodel, en digital overflademodel og ortofoto fra Geodatastyrelsens data fra Kortforsyningen.dk Terrænmodellen gengiver jordoverlæden renset for bygninger og beplantning og det er den som projektet skæres ind i. Overflademodellen viser bygninger og træer og bruges til at verificere indpasningen mellem forgrund og baggrund i det enkelte billede.

Visualiseringer:
Formålet med udarbejdelse af visualiseringer er at give offentligheden og beslutningstagere en retvisende forståelse for hvorledes projektet vil fremtræde.

Der er ud fra landskabsmæssige påvirkninger og påvirkninger af sårbare områder udvalgt de standpunkter der laves visualiseringer af. I denne udvælgelse har deltaget landskabsarkitekter, miljørådgivere og teknikere.

Visualiseringerne i denne rapport er fotomatch, der laves ved at tage foto optaget på stedet og tilføje de nye anlæg i billederne vha. computergrafik der er lavet ud fra en 3D model af projektet.

Billederne i denne rapport er taget med et digitalt spejreflekskamera på stativ og for hvert foto er kameraet og en række målepunkter i billedet målt ind af en landinspektør med en RTK-GPS, der giver en præcision på ca. +/- 2 cm for kameraets position og de tilhørende målepunkter. På denne måde kan kameraets position, retningsvinkel og billedfinkel med stor præcision overføres til 3D modellen.

3D modellen er opbygget af grunddata og projektdata. Grunddata omfatter en digital terrænmodel, en digital overflademodel og ortofoto fra Geodatastyrelsens data fra Kortforsyningen.dk Terrænmodellen gengiver jordoverlæden renset for bygninger og beplantning og det er den som projektet skæres ind i. Overflademodellen viser bygninger og træer og bruges til at verificere indpasningen mellem forgrund og baggrund i det enkelte billede.

Projektdata er 3D CAD modellerne af den nye jernbane, veje, broer, bassiner, perroner m.m. Til et VVM projekt er disse modeller lavet på et mere overordnet niveau end ved detailprojektering, som vil komme senere. Derfor er detaljer som køreligningsmaster, autoværn, afstrøbning etc. tilføjelser som generelle elementer som en del af arbejdet med visualiseringerne. Dette er gjort for at give en mere korrekt helhedsopfattelse af projektet.

Formålet med visualiseringerne er at give modtageren en god oplevelse af hvad projektet vil betyde for det område hvor der visualiseres fra. Da jernbanen er et langt vandret element som både skærer sig ind i og stikker ovenud af landskabet er det en udfordring at finde egne steder hvor man både er tæt nok på til at se detaljer og samtidig kan se nok af banen til at se samspill med landskabet. Der er derfor valgt at bruge en 35 mm optik som ligger i den lave ende af normalområdet, da den giver et vandret billedfelt på ca. 55 grader ud af horisontens 360 grader frem for en 50 mm optik der vil give et vandret billedfelt på 39 grader.

For alle visualiseringer gælder, at de bør ses i den korrekte betraktningsafstand, som er den afstand hvor visualiseringen på print eller vist på en skærm fylder samme billedfinkel som den gengiver. For 35 mm billederne i denne rapport er betraktningsafstanden lig med billedets bredde. Dvs. trykt på liggende A3 hvor billedet er 40 cm bredt skal det holdes 40 cm fra øjnene og tilsvarende for billeder vist på en skærm.